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Measurements are presented of the fluctuating pressure recorded at a point 90" from 
the mean position of the fonva,rd stagnation point on a circular cylinder oscillating 
in a water flow. The aspect ratio of the cylinder was 9.5 and the turbulence level in 
the free-strea.m was 5.5%. The cylinder Reynolds number was 2 . 4 ~  lo4 and the 
cylinder was forced to oscillate transverse to the main flow a t  amplitudes up to 1.33 
cylinder diameters. The reduced velocity was varied over the range 3-18 and the 
experiments spanned the vortex-shedding lock-in range. Measurements of phase 
difference between pressure and displacement show that the maximum out-of-phase 
lift force occurs a t  an amplitude of about half a diameter. Good agreement is found 
between measurements on forced and freely oscillating cylinders. A simple potential- 
flow model gives reasonable predictions of the pressure fluctuations a t  the body 
frequency and a t  twice the body frequency a t  reduced velocities away from lock-in. 

1. Introduction 
One of the most common causes of flow-induced vibration of high aspect ratio bluff 

bodies is the regular shedding of vortices. Oscillations most frequently occur in a 
direction transverse to that of the mainstream and are often accompanied by large 
changes in the structure of the shed vortices: the correlation length, strength and 
formation distance can all be altered. I n  addition to the non-dimensional quantities 
that  describe stationary-cylinder flow, oscillating-cylinder flow is sensitive to the 
amplitude ratio AID, where A is the amplitude of oscillation and D is the cylinder 
diameter, and to the reduced velocity UIND, where U is the flow velocity and N is 
the frequency of oscillation. If we compare the flows about a freely oscillating cylinder 
and a similar cylinder forced to oscillate, these will be the same if the Reynolds 
number, amplitude ratio and reduced velocity are the same for each case. This general- 
ization needs qualification, however; for a forced cylinder A is held constant whereas 
for a freely vibrating cylinder there will be some modulation of the response, due to 
cycle-to-cycle variations in the shed vortices, and flow history will have an influence 
on wake structure. I n  the present investigation forced oscillations have been used 
since it is easier to control an experiment where A and N are held constant and there 
are less limitations on the range of AID that can be examined. 

of Toronto, Canada. 
t The experiments were carried out in the Department of Mechanical Engineering, University 
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Numerous experimental and theoretical studies have been performed using the 
circular cylinder and this shape was chosen for the present investigation. However, 
in spite of the large volume of previous work, there are few measurements to be found 
of the lift forces acting on a circular cylinder forced to oscillate, Bishop & Hassan 
(1964) measured the fluctuating lift and drag forces on a circular cylinder forced to 
oscillate transverse to a water flow at Reynolds numbers within the subcritical 
regime. However, owing to  problems involving the subtraction of inertia forces, 
caused by both the mass and added mass of the cylinder, their results are of limited 
accuracy. Nevertheless their findings are extremely interesting and their suggestion 
that the wake-cylinder combination behaves as a nonlinear oscillator initiated a 
productive line of theoretical study (see Hartlen & Currie 1970). Similar measurements 
have been made by Jones (1968) a t  Reynolds numbers in excess of 5.5 x lo6 but the 
maximum amplitude ratio tested was only 0.06. Such direct measurements of sectional 
forces are difficult to make accurately on a cylinder performing large amplitude 
oscillations and another possibility is to derive these forces from measurements of the 
fluctuating surface pressure. The fluctuating lift on stationary circular cylinders has 
been estimated by Loiseau & Szechenyi (1974), using 20 pressure transducers, and 
by Surry (1972), who used two transducers and made 157 cross-correlation measure- 
ments for each lift estimate. In  the present investigation excessive cost ruled out the 
first method and excessive time the second. Instead it was decided to measure the 
fluctuating pressure at B = go", B being measured from the mean position of the front 
stagnation point, and to assume that this has some characteristics in common with 
the fluctuating lift. 

Although many authors have reported measurements of the fluctuating pressure 
on stationary circular cylinders there are very few measurements on oscillating 
cylinders. At the Reynolds number of the present investigation, approximately 
2 x 104, Gerrard (1961), McGregor (1957), Feng (1968) and Novak & Tanaka (1975) 
have all measured pressure fluctuations on stationary cylinders. Measured values of 
Cg, where C,b is defined as the root-mean-square value of pressure fluctuations divided 
by the free-stream dynamic pressure, are sensitive to experimental conditions. They 
depend, amongst other things, upon the Reynolds number, cylinder surface finish, 
aspect ratio, end-plate design, tunnel turbulence level, blockage ratio and acoustic 
disturbances. Therefore it is not surprising that, a t  the centre-span and a t  8 = go", 
the above authors show a spread in Ck between 0.19 and 0.31, however the majority 
of values lie between 0.2 and 0.25. One might expect that when the cylinder is under- 
going large amplitude oscillations many of these factors will lose their importance 
and CL will depend primarily on the cylinder vibration and Reynolds number. A few 
measurements of the fluctuating pressure on an oscillating circular cylinder a t  
Reynolds numbers around 2 x lo4 have been reported by Feng (1968) and Novak & 
Tanaka (1975). Feng's measurements were made on a freely vibrating cylinder over 
a range of amplitudes whereas Novak & Tanaka's were for EL forced cylinder a t  
A I D  = 0.05 for one unspecified reduced velocity. 

The aim of the present investigation is to examine experimentally the fluctuating 
pressure a t  8 = 90" for a range of amplitude ratios and reduced velocities. The experi- 
ments are conducted in water, rather than air, because for a given Reynolds number, 
reduced velocity and cylinder size the frequency for vortex lock-in is proportional to 
the kinematic viscosity of the fluid and for simplicity of mechanical design one wishes 
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to  keep this frequency as low as possible. The results will be compared with Feng’s 
measurements made under freely oscillating conditions. It is hoped that such results 
will provide some understanding of large amplitude vortex-induced vibrations and 
will be helpful in testing mathematical models. 

2. Experimental arrangement 
The experiments were conducted in an open water channel in the Department of 

Mechanical Engineering at the University of Toronto. The water channel was 0.91 m 
wide and 0.91 m high and the water depth could be varied by an adjustable gate a t  
the downstream end. The overall length of the channel, from the end of the contraction 
to  the downstream gate, was 12.8 m and the experiments were conducted a t  a station 
8.63 m from the upstream end. Throughout the experiments the water depth was 
kept constant at 0.66m and the flow rate was 0.26m3/s, giving a mean velocity 
across the channel of about 0.43 m/s. Two coarse grids were situated in the settling 
chamber in order to improve the uniformity of the mean velocity across the channel. 
The distribution of mean velocity in the empty channel was measured with a Pitot 
tube connected to  an inclined manometer and the turbulence level was measured 
using a hot-film probe. 

The circular cylinder used was made of Perspex and was 57.2 mm in diameter. 
The top of the cylinder projected through the water surface and there was a small 
clearance between the bottom of the cylinder and the floor of the channel. Thin 
circular plates 152 mm diameter were added at either end, one being 76 mm below 
the free surface and the other 40 mm above the floor of the channel. The aspect ratio 
of the cylinder was 9.5 between the end plates. A Setra model 237 pressure transducer 
with a pressure range from 0 to 1 psi was mounted inside the cylinder a t  a height 
equal to about half the water depth. The transducer was connected to  a pressure 
hole in the surface of the cylinder by a 50 mm length of tubing about 1.3 mm internal 
diameter. The natural frequency of the transducer and tubing system, when filled 
with water, was in excess of 100 Hz. The cylinder occupied 6% of the cross-sectional 
area of the channel but the pressure measurements have not been corrected for the 
effects of blockage. There is some uncertainty about correcting fluctuating-pressure 
measurements but if blockage is considered to be simply an increase in stream velocity 
then the measurements of C ;  would be about 6% too high. 

The cylinder was attached to a carriage mounted above the water surface and the 
carriage could be oscillated in a direction transverse to that of the flow by using a 
scotch-yoke mechanism. The mechanism was driven by a 4 h.p. variable-speed d.c. 
motor and the frequency of cylinder oscillation could be varied continuously between 
0 and 2.35 Hz. The amplitude of oscillation was adjustable in steps of 12.7 mm up 
to a maximum amplitude of 76.2 mm. This maximum amplitude corresponds to a 
peak-to-peak oscillation of 2-66 cylinder diameters. The displacement of the cylinder 
was monitored by a linear potentiometer. The natural frequency of the cantilevered 
cylinder was estimated to  be an order of magnitude higher than the highest cylinder 
forcing frequency. 

The pressure and displacement transducer signals were passed through two identical 
low pass filters set to  pass all frequencies below 10 Hz. I n  order to prepare the signals 
for recording the d.c. levels were backed off against a d.c. supply. The signals were 
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FIGURE 1. Vertical profile of mean velocity at the centre of the channel. 
1 ,  end-plate position. 

recorded simultaneously on two channels of a 14-channel Ampex P R  2200 analog 
tape recorder and, owing to the low frequencies involved, recording times of 20 min 
were used. The tape recorder was transported later to the Computer Research Facility 
of the University of Toronto and digitization and analysis of the signals carried out. 
Power spectra of the pressure and displacement signals were computed together with 
the cross-correlation between the two signals. The cross-correlation was used to 
calculate the phase difference between the displacement of the cylinder and that part 
of the pressure signal that  was a t  the cylinder frequency. 

3. Results 
Measurements of the mean velocity in the channel a t  the test station were made 

with the aid of a Pitot tube. A vertical profile taken a t  the centre of the channel is 
shown in figure 1, where the local velocity U ,  non-dimensionalized by the mean 
velocity Urn across the central portion of the channel, is plotted against y / H ,  where 
y is the distance from the bottom of the channel and H is the water depth. A profile 
across the channel, taken a t  about the half-depth, is shown in figure 2, where z is the 
distance from one wall and W is the width of the channel. The average velocity a t  
the test station was found to be 0.43 m/s. The error in measuring the velocity at any 
point was about 14% and therefore much of the scatter seen in figures 1 and 2 can 
be attributed to measurement error. 

Figure 1 shows a reduction in the velocity towards the free surface and within the 
boundary layer on the channel floor. Indicated in the figure are the positions of the end 
plates that were added to improve the two-dimensionality of the flow around the 
cylinder. Inevitably their positioning was a matter of compromise between the degree 
of mean-flow uniformity and the aspect ratio of the cylinder and, reluctantly, some 
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degree of non-uniformity was accepted. All the fluctuating-pressure measurements 
were made a t  the half-depth, where the approaching flow was closely uniform. The 
profile of mean velocity across the channel plotted in figure 2 shows the mean flow to 
be uniform across 80% of the channel. 

The fluctuating-pressure measurements were performed at a Reynolds number of 
2.4 x lo4 and the experiments were carried out for a range of values of U I N D  and 
A / D .  The reduced velocity was varied by changing the oscillation frequency hence 
the Reynolds number, based on U ,  remained constant throughout. Initially the 
cylinder was held stationary and measurements of Ci; were made at 8 = 0 and 0 = 90". 
The value of Cl, measured a t  8 = 90" was 0.22, which is in the middle of the range 
recorded by Feng (1968) at a similar Reynolds number. At 8 = 0, Ci; was found to be 
0.11, which is an order of magnitude higher than the value measured by Feng (1968) 
and McGregor (1957). McGregor, in particular, showed that vortex shedding induces 
very small fluctuating pressures a t  the stagnation point and the high fluctuating 
pressures recorded in the present experiment are probably related to turbulence in 
the approaching flow. Bearman (1972) measured pressure fluctuations a t  the stag- 
nation point on a bluff body and showed that, so long as the scale of turbulence is 
large compared with the width of the body, Ck z 2 ( 2 ) j / U ,  where (u")i is the r.m.s. 
value of the velocity fluctuations in the mean-flow direction. This simple result follows 
from the theory of turbulent flow around bluff bodies by Hunt (1973). Therefore, 
assuming L J D  is large, the fluctuating-pressure measurements suggest that the 
turbulence level in the channel a t  the test station could be as high as 5.5%. If the 
integral scale of the turbulence is large it follows that the power spectrum of approach- 
ing fluctuations can be deduced from the power spectrum of pressure fluctuations at 
the stagnation point (see Bearman 1972). From the value of the power spectral density 
a t  low wavenumbers, it is suggested that the integral scale of the turbulence is about 

23 FLM 91 
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0.15 m, i.e. 2.6 times the diameter of the cylinder. At a later stage in the investigation, 
in order to measure the turbulence level more directly, a hot-film probe was used and 
this also recorded a turbulence level, for the longitudinal component, of 5.5%. It 
seems that this turbulence was generated in the settling chamber where the flow 
entered from the pump. Although the two very coarse grids in the settling chamber 
were successful a t  improving the mean velocity distribution they were not suitable 
for reducing turbulence. Within the time available to perform the experiments it 
was not practical to build an improved settling chamber so the results presented are 
for a free-stream turbulence level of 5.5%. 

The addition of free-stream turbulence reduces the critical Reynolds number for 
a circular cylinder and Bearman (1968) has suggested that the beginning of the critical 
regime is a function of the Taylor parameter [(u2)i/ U ]  (D/Lv)*, where L, is the lateral 
scale of the turbulence. The values of turbulence intensity and integral scale measured 
in this experiment suggest that the critical Reynolds number was about 7 or 8 x lo4,  
i.e. about three times higher than the Reynolds number used for the measurements. 
Therefore it is expected that the cylinder flow was within the subcritical regime. The 
Strouhal number S = n D / U ,  where n is the vortex-shedding frequency, was esti- 
mated from the peak in the pressure-fluctuation spectrum measured a t  0 = 90" and 
this gave a value of 0.20. If blockage is taken into account in calculating U this reduces 
S to 0.19, which is the value expected in subcritical flow at this Reynolds number. 

Ideally, when making pressure measurements on oscillating cylinders, the pressure 
transducer should be mounted flush with the cylinder surface. However the compara- 
tively large size of a pressure-transducer diaphragm often means that it has to  be 
mounted inside the cylinder and connected to a surface pressure hole by a length of 
tubing. If the model experiences any acceleration along a line connecting the trans- 
ducer to the surface hole a pressure difference will develop between the hole and the 
face of the transducer. If this distance is h it can be shown that the coefficient of 
fluctuating pressure C;,(N) is given by 2*Ah(27rN)2/U2, where C;,(N) is defined in 
the same way as C;. I n  the present experiments h / D  was 0.27 and a t  the highest 
value of A I D  used, 1.33,  the coefficient of fluctuating pressure due to this effect 
alone rises as high as 1.25 a t  U I N D  = 4. Some calibration experiments were carried 
out with the pressure-transducer tubing filled with water but with the channel empty. 
Fluctuating pressures measured with the cylinder oscillating agreed very well with 
the predictions from the relation given above, and the pressure signal was in phase 
with the cylinder acceleration. Power spectra of the pressure and displacement signals 
measured under these conditions indicated only power a t  the oscillation frequency. 

All the measurements of pressure fluctuations and phase angles between the cyl- 
inder displacement and pressure had to be corrected to take account of the effect of 
the length of tubing. The fluctuating lift on a cylinder is 180" out of phase with the 
fluctuation pressure a t  8 = 90" therefore phase angles quoted throughout this paper 
are for the phase by which suction on the cylinder leads the displacement. The measured 
r.m.s. value of the component of the fluctuating pressure a t  the cylinder oscillation 
frequency, Ch,(N),  was estimated from the power spectrum of the total signal. The 
phase angle p for this signal was found from the cross-correlation between pressure 
and displacement. The coefficient C j ( N )  of r.m.s. pressure fluctuations a t  frequency 
N that  would be measured by a flush transducer can then be found from the relation 

Ck(N)  sin (27rNt + $) + Ck,(N) sin (27rNt) = CLT(N) sin (27rNt+p),  (1)  
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FIGURE 3. Pressure fluctuations at 6 = 90" w8. reduced velocity. -.- , A I D  = 0 ;  
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where q5 is the corrected phase angle, 

The corrected r.m.s. pressure coefficient Cg is given by 

Cb = (CkA(N)2 + C $ -  2Ci,,(N) Ci, ,(N) C O S ~ ) * ,  (3) 

where CAm is the measured fluctuating pressure coefficient. 
Measurements of C; at 8 = 90" are shown in figure 3 plotted against reduced velocity 

for amplitudes up to A I D  = 1.33. The levels of C l  rise as SJlND is reduced and in 
most cases show a peak in the range of vortex lock-in, somewhere between U j N D  = 5 
and 7.  At the higher values of A I D  this peak becomes much less distinct and appears 
as no more than a kink in the curve at A I D  = 1.33. C; rises rapidly a t  low values of 
U / N D  as the pressure fluctuations become dominated by fluid acceleration effects. Pre- 
sumably the curves for A I D  = 0.44 and 0-89 would also begin to rise if measurements 
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FIGURE 4. Vortex-shedding frequency V.S. reduced velocity. 
-, A / D  = 0 ;  0,  A / D  = 0.11; 0, AID = 1.33. 

were made at lower values of U I N D .  The stationary-cylinder results are shown 
for comparison and it can be seen that a t  high values of UIND,  when the cylinder 
vibrates a t  a lower frequency than that a t  which vortices are naturally shed, the 
curves are approaching the stationary-cylinder value. 

Measurements of the vortex-shedding frequency n are shown in figure 4 plotted 
against reduced velocity. For the sake of clarity only measurements for A I D  = 0.11 
and 1.33 are shown. The straight line depicts the vortex-shedding frequency for the 
stationary cylinder and the oscillation frequency of the cylinder intersects this line 
a t  U I N D  = 5.10. At high values of UIND,  above say 15, the vortex-shedding fre- 
quency is found as a clear, pronounced peak in the pressure spectrum. When UIND 
is reduced towards the lock-in value the natural shedding frequency peak weakens 
as power is drained out into the peak a t  the body frequency. As reported by previous 
authors, the extent of the lock-in range increases with amplitude, however a lower 
limit to lock-in is difficult to detect at large values of A I D  owing to the dominance 
of inertia effects. 

Figures 5 and 6 show, respectively, the variation of the coefficient CL(N) of r.m.s. 
pressure fluctuations a t  the body frequency and the coefficient Ci, (2N)  at twice the 
body frequency plotted against reduced velocity for the range of amplitudes tested. 
The variation of Cb(N)  follows closely the variation of Cl, shown in figure 3 since, 
except a t  high values of U I N D  where the natural shedding frequency is the most 
conspicuous, the body frequency dominates the pressure spectrum. The next strongest 
frequency to emerge was the one a t  twice the body frequency and Cb(2N)  generally 
increases with decreasing reduced velocity but, compared with C;,(N),  there is a 
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FIGURE 5.  Pressure fluctuations a t  body frequency at 0 = 90" us. reduced velocity. 
Symbols as in figure 3. 

greater dependence on amplitude a t  low values of U I N D .  The signal a t  twice the 
body frequency shows a small peak within the lock-in range. 

In  order to determine whether the cylinder, if flexibly mounted, would be susceptible 
to flow-induced vibrations it is important to know the phase angle between the lift 
force on the cylinder and the displacement. The pressure a t  8 = 90" is strongIy related 
to the lift and the phase angle between the suction a t  this point and the displacement 
is expected to be close to the phase angle between the lift and the displacement. The 
phase angle Q is plotted in figure 7 and it shows the expected large change in phase 
angle as U I N D  is taken through the resonance with vortex shedding. For the lift 
force to be capable of exciting oscillations the phase angle needs to be within the 
range 0 < $ < 180". At reduced velocities below lock-in the phase angle is near zero, 
confirming that the pressure is mainly related to the acceleration of the cylinder. 
A t  the highest reduced velocities examined the phase angle is shown for only the two 
largest amplitudes because a t  lower amplitudes Ck(N) ,  as shown in figure 5, was too 
low to give a reliable estimate of $. 
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Symbols as in figure 3. 
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Phase angles were measured, from the cross-correlation between pressure and dis- 
placement, to an accuracy of about 3 or 4". When these results were corrected to take 
account of the effect of acceleration of the fluid within the tubing, according to ( 2 ) ,  
the accuracy of the resulting values of $ was hardly affected. This is because the 
fluctuating pressure coeEcient Cg,(N) is proportional to ( N D / U ) 2  and attains a 
substantial value a t  only low reduced velocities, when it is in phase with the pressure 
acting on the cylinder surface. The pressure coefficient Cbm could be measured to an 
accuracy of better than 2%. The effect of applying the correction given in (3) was 
to reduce the accuracy of the results at low values of U / N D  to about 3%. It should 
be pointed out, however, that had no correction been applied Cg would have beenover 
30% too high a t  the larger amplitudes for U I N D  = 4.5. The values of C ; ( N )  and 
C',(2N) plotted in figures 5 and 6 were estimated from spectra measurements. At 
values of U I N D  above lock-in the pressure fluctuations at the body frequency are 
comparatively weak and a t  U I N D  = 17 their accuracy is estimated to be about 5%. 
At lock-in and below, the accuracy is the same as that for the total signal Cg. The 
measurements of C k ( 2 N )  required no correction but their accuracy is limited to about 
5%. 

4. Discussion of results 
The similarity between forced and freely oscillating cylinder flows has been dis- 

cussed in the introduction. Results from the present experiments can be compared 
with those of Feng (1968)) who carried out measurements on a freely oscillating 
circular cylinder a t  approximately the same Reynolds number. Figure 8 shows 
measurements of the phase angle, between suction a t  0 = 90" and cylinder displace- 
ment, for a forced and a free cylinder and it can be seen that the agreement is good. 
Feng also presents a few measurements of Cg for an oscillating cylinder and, where 
it is possible to compare results with the present work, agreement is satisfactory. 
These agreements suggest that the high turbulence level of the stream in the present 
experiments could have had only a small effect on the basic structure of the cylinder 
flow and probably this was negligible for the highest amplitudes of oscillation. 

I n  order to calculate the response of flexibly mounted cylinders we need to know 
the magnitude of the part of the lift force that is out of phase with the motion. If this 
force is positive then oscillations will develop and the amplitude will increase until a 
balance is achieved between it and the structural damping forces. If again we assume 
the suction at 0 = 90" to be characteristic of the lift then the out-of-phase force will 
be related to C I ( N )  sin q5. The maximum value of this term, for a given amplitude, 
has been calculated from the data plotted in figures 5 and 7 and, because of the rapid 
variation in phase through lock-in, it peaks very sharply between U I N D  = 5 and 7. 
Maximum values of C ; ( N )  sin q5 are plotted in figure 9 against amplitude and display 
a number of interesting features. At small amplitude fluid-structure interaction has 
the effect of increasing C i ( N )  sin$,,, dramatically. Studies by Davies (1975) on the 
wake of an oscillating D-section cylinder within the lock-in range show that small 
amplitude oscillations increase the strength of shed vortices and decrease the vortex 
formation distance. In  addition, of course, we have the familiar increase in the span- 
wise correlation length when a body is oscillated as reported, for example, by Obasaju 
(1977). 
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The value of U I N D  at the maximum value of C i ( N )  sin $ is higher than that at  
which the stationary-body shedding frequency would coincide with the oscillation 
frequency. Therefore the resulting Strouhal number is always lower than the stationary 
cylinder value and this suggests that, comparatively, there is a longer time for the 
vortex sheet shed from an oscillating cylinder to roll up. Thus one might expect this 
to initiate stronger vortices and that these would develop more intense pressure 
fluctuations. At AID = 0.44 the maximum value of CL(N) sin $ occurs at  a Strouhal 
number 20% lower than the stationary-cylinder value. 

Figure 9 shows that the value of UIND for the maximum out-of-phase lift force 
progressively increases with increasing AID for AID up to at  least 0.44. This suggests 
that hysteresis can exist in the response of flexibly mounted cylinders if the damping 
is low enough to allow large amplitude oscillations to build up. For a freely vibrating 
cylinder with fixed mechanical properties AID a (U/ND)2CL(N) sin $, where C,(N) 
is the coefficient of fluctuating lift a t  the frequency of oscillation (see, for example, 
Parkinson 1974). Therefore as the velocity increases AID will increase but because 
of the fluid-structure interaction the increases in both AID and UIND can lead, as 
figure 9 indicates, to larger values of the out-of-phase lift force. AID increases, there- 
fore, until a new equilibrium is reached. However, if the velocity is reduced from a 
value above the lock-in range there is no continuous path to the large values of out- 
of-phase lift that can sustain the largest amplitudes. Compared with the case of 
increasing velocity, decreasing the velocity should show a lower peak amplitude 
occurring at  a lower value of UIND. Such a hysteresis is a prominent feature of 
Feng’s results for a lightly damped circular cylinder. 

It is interesting to note in figure 9 that the out-of-phase force reaches a maximum 
at an amplitude of roughly half a cylinder diameter. Extrapolating the data, we can 
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Numbers in parentheses denote reduced velocity. 

posulate that an undamped circular cylinder would not oscillate beyond an amplitude 
of between 1.5 and 2 diameters. At A I D  = 1.33 the maximum out-of-phase suction 
occurs a t  about U I N D  = 6.5 and inspection of figures 5 and 6 shows that Ck(N)  is 
small and less even than Ck(2N); therefore there seems to be a breaking down of the 
basic vortex-shedding flow structure. During high amplitude oscillations the maxi- 
mum velocity of the cylinder is of the same order as the flow velocity. The ratio of 
the maximum cylinder velocity to the stream velocity is given by (2nAlD)  ( N D l U )  
and a t  A I D  = 1.33 and U I N D  = 6-5, for example, the maximum cylinder velocity 
is 1.29U. A pertinent question to ask, therefore, is how will the cylinder flow respond 
to such large fluctuations in the magnitude and direction of the relative approaching 
stream? Observing the free surface of the water, for the high amplitude cases, the 
flow around the cylinder appears to align itself with the instantaneous direction of the 
stream. The separation points move through large angular distances and the cylinder 
motion must be opposed by a component of the instantaneous drag force. These 
observations may be suspect because the cylinder was fitted with an end plate located 
just below the water surface. However, the excellent flow-visualization photographs 
by Meier-Windhorst ( 1939) of a freely vibrating cylinder executing large amplitude 
oscillations show similar very large movements of the separation position. 

It is difficult to know how even to begin to develop a mathematical model of the 
flow around an oscillating circular cylinder which will describe all the effects that 
have been observed. Models using the nonlinear-oscillator concept have gone a long 
way towards predicting the form of the lift-force variation during lock-in for modest 
amplitudes of oscillation. In  order to predict pressure fluctuations a t  reduced velocities 
away from lock-in, it was decided to explore the limitations of a simple potential-flow 
approach. 

The instantaneous value C,(t) of the pressure coefficient for an oscillating circular 
cylinder a t  0 = 90" is given in potential flow by the expression 

cos4nNt-2sin2nNt 
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10. Pressure fluctuations a t  body frequency a t  0 = 90" vs. amplitude. 
0, U / N D  = 4.5; x , U / N D  = 16-0; ---, equation (4). 
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FIGURE 11. Pressure fluctuations a t  twice body frequency a t  0 = 90" 'us. amplitude. 
0, U / N D  = 4.5; x , U / N D  = 16-0; -, equation ( 5 ) .  
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The first term, with twice the cylinder frequency, is generated by the changing 
incidence and relative velocity of the cylinder and the second term is related to the 
cylinder acceleration. Therefore it follows that 

Measurements of CL(N) a t  6' = 90" for a high and a low reduced velocity areplotted 
in figure 10 against A I D  and compared with (4). Considering the grossness of the 
assumption made the agreement with experiment is surprisingly good and in particular 
the results show a linear variation of CL(N) with AID. Results for Ck(2N) are shown 
in figure 1 1  compared with (5) and agreement is equally good. In  reality, of course, 
the flow will be a combination of the potential solution and the flow produced by the 
generation and shedding of vorticity. It appears that, away from lock-in, C ; ( N )  is 
related mainly t,o fluid inertia and that the inertia effects are reasonably described 
by the potential solution. This is a situation which also exists where bluff bodies are 
oscillated over similar amplitudes in still fluid. 

By no stretch of the imagination would one have expected such a naive approach 
to work for Cj(2N) .  However there is some evidence from flow visualization to suggest 
that the flow, a t  large amplitudes, behaves in a quasi-steady manner. Therefore a 
component of the fluctuating pressure a t  6' = 90" will result from the quasi-steady 
changes in the pressure distribution. On a circular cylinder, in the subcritical regime 
the time-mean pressure coefficient beyond 0 = 80" is nearly constant a t  about - 1. 
Further forward, the mean C, varies by about f 20% between 6' = 80" and 50", and 
therefore over a large angular distance spanning 6' = go", C, is approximately constant. 
This leads to a pressure fluctuation a t  twice the cylinder frequency equal to 

24n' (B) A (+:. N D  

If C, is taken to be - 1 this gives a result which is the same as that given by ( 5 )  except 
that the phase is 180" different. Clearly this suggests that the phase between Gb(2.N) 
and the square of the cylinder displacement should be measured. The quasi-steady 
approach can be made more sophisticated by incorporating a better representation of 
the variation of C, with 6'. This leads to predictions of weaker pressure fluctuations a t  
higher harmonics and these were visible in some of the spectra measurements. 

5. Conclusions 
Pressure fluctuations on the surface of a circular cylinder forced to oscillate in a 

water flow have been measured over a range of amplitudes up to A I D  = 1.33. The 
reduced velocity was varied over the range 3-18. At 8 = go", C, rises as U / N D  is 
reduced and shows a peak within the lock-in range. The maximum value of the 
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fluctuations in suction at  8 = 90°, out of phase with the motion, occurs within the 
lock-in range and reaches a peak for A I D  M 0.5. It is predicted that the amplitude 
of an undamped cylinder would be limited to about two diameters. The measurements 
indicate the possibility of hysteresis in the response of freely vibrating cylinders 
similar to that observed by Feng (1968). The turbulence level in the approaching 
stream was 5.5% but, by comparison with Feng’s measurements, this does not seem 
to have strongly influenced the results. Good agreement is found between Feng’s 
measurements of the phase between the pressure and displacement on a freely oscil- 
lating cylinder and the phase measured here on a cylinder forced to oscillate. Away 
from lock-in, potential-flow modelling gives a surprisingly good prediction of the 
pressure fluctuations at  the body frequency and at  twice the body frequency. Fluctu- 
ations a t  the body frequency are mainly related to fluid inertia whereas those a t  twice 
the body frequency can be accounted for by quasi-steady changes in the pressure 
distribution. Agreement at twice the body frequency is shown to be fortuitous. 
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